{..ESERCIZI RIASSUNTIVI SULLA DINAMICA ed I MOTI NEL PIANO LINK SM (Ruffo) LINK Francesco Daddi (esercizi sul moto circolare) (soluz. spiegata) LINK
- LINK (soluz. numeriche) LINK Zanichelli (soluz. numeriche) LINK SEI (S.M. on line) LINK www.lorenzoandreassi.it (soluzione spiegata) LINK library.weschool.com (S.M. On line) LINK Edutecnica }
{ [accoglienza] [1As2022] GOOGLE FORM LINK}
{ [Biennio] [fisica] [accelerato] [accelerato] [fantafis314] LINK }
{ [Biennio] [fisica] [RETTILINEO] [fantafis314] LINK }
{[cerca_sul_web] [meccanica] [forza] [molla] [formula]come si calcola la forza elastica? `vecF=-kvecx }
{ [CIBRARIO] [Cinematica] [f09] moto circolare uniforme LINK}
{ [CIBRARIO] [Cinematica] [f09] moto circolare uniforme: LINK }
{ [Cinematica] [f09] [formula] eq. del [moto] [rettilineo] [uniforme] `x(t)=1/2at^2+v0_x t + x_0`}
{ [decapoa] [formulario] [dinamica] [f10] [g01] [g02] LINK}
{ [decapoa] [formulario] [elettromagnetismo] LINK}
{ [decapoa] [formulario] [errori]] [f02] LINK}
{ [decapoa] [formulario] [meccanica] [fluidodinamica] [fluidi] [f06] [g05] LINK}
{ [decapoa] [formulario] [ottica] [f13] LINK}
{ [decapoa] [formulario] [moti-nel-piano] [Cinematica] [f09][moto_armonico][moto_circolare] LINK}
{ [decapoa] [formulario] [termodinamica] [f12] [g09] [g10] [g11] [g12] LINK}
{ [domanda] In che cosa si differenziano [moto] uniformemente accelerato e [moto] [rettilineo] uniforme?Nel [moto] [rettilineo] uniforme la velocità rimane costante mentre nel [moto] uniformemente accelerato la velocità o aumenta o diminuisce. }
{ [domanda] Qual è il primo principio della dinamica?Secondo il primo principio della dinamica se la somma delle forze che agiscono su un oggetto è pari a 0 allora l'oggetto è fermo o si muove con un [moto] [rettilineo] uniforme }
{ [domanda] Qual è la formula della forza elastica? Forza uguale costante elastica per allungamento. }
{ [f07] --> Moto uniforme [cinematica] LINK [cercarelli] [multilingue] }
{ [f07]) IL MOTO UNIFORME: LINK URLs cinematica
- LINK gn RICERCHE PLURILINGUE LINK gn youTube PLAYLIST LINK gn padlet CINEMATICA LINK WALTER LEWIN - 1D Kinematics - Speed, Velocity, Acceleration LINK Pag. 225) VIDEO: Il grafico spazio tempo LINK>Pag. 229) VideoLaboratorio: Il moto uniforme LINK Pag. 229) VIDEO: Il moto uniforme LINK Pag. 244) Esercizio 9: Paolo compra il pane LINK Pag. 245) Esercizio 10: L'auto radiocomandata LINK Pag. 245) Esercizio 12: Il sorpasso LINK Pag. 245) Esercizio 13: Ci troviamo al ristorante LINK Pag. 245) Esercizio 17: Una linea ferroviaria LINK Desmos LINK Mathnotepad }
{ [fisica] [applet] [onde] [g13] [falstad] VOCE, vocali, forma d'onda
- LINK}
{[formula_inversa] $cos(alpha)=0.3 <=> alpha=cos^(-1)(0.3)]$ }
{ [formula] (Lyman,Balmer,Paschen)
$m=1,2,3,R=1.097·10^7m^(-1)$
$1/lambda=R(1/m^2-1/n^2)$ }
{ [formula] ${(Phi(vecE)=Q_("tot")/epsilon),(Gamma_(gamma)(vecE)=(DeltaPhi(vecB))/(Deltat)),(Phi(vecB)=0),(Gamma_(gamma)(vecB)=mu(Sigma_iI_i+epsilon(DeltaPhi(vecE))/(Deltat))) :}
$ }
{ [formula] ${(Phi(vecE)=Q_("tot")/epsilon),(Gamma_(gamma)(vecE)=0),(Phi(vecB)=0),(Gamma_(gamma)(vecB)=muSigma_iI_i):}
$}
{ [formula] $L_("sol")=(Phi_("sol")(B_("sol")))/(I_("sol"))=(NB_("sol")A)/i=(N·Nmu_0i/(l)A)/i=(N^2mu_0A)/l$}
{ [formula] $p=F/A=((Deltaq)/(Deltat))/A=((PAcDeltat)/(Deltat))/(A)=Pc=u/c c =u$ }
{ [formula] $u_("elmw")=u(E)+u(B)=1/2epsilon_0E^2+1/(2mu_0)B^2$
$u(E)=u(B)
{ [formula] $u(B_("sol"))=1/(2mu)B^2$ }
{ [formula] $vecacdotvecb=abcos(theta)=a_xb_x+a_yb_y+a_zbz=Sigma_(i=1)^(i=3)a_ib_i=a^ib_i$}
{ [formula] relativita]$E_("tot")(p)=E=gammam_0c^2=gammam_0(v/v)c^2=(gammam_0v)(c^2/v)=(pc^2)/v]$
$E=(pc^2)/v =>(beta)=v/c=(pc)/E$
$E=(mc^2)/(sqrt(1-beta^2))=(mc^2)/(sqrt(1-(p^2c^2)/E^2)$
$E^2=(m^2c^4)/((E^2-p^2c^2)/E^2)
$E^2=E^2((m^2c^4)/(E^2-p^2c^2))$
$1=(m^2c^4)/(E^2-p^2c^2)$
$E^2-p^2c^2=m^2c^4$
$E_("tot")(p)=m^2c^4+p^2c^2$}
{ [formula] (S.R.I.) }
{ [formula] [quantistica] [g29] [g30]$(ΔE)·(Δt)≥barh/2$ }
{ [formula]
- LINK }
{ [formula] Esec$=-(DeltaPhi(B_("prim")))/(Deltat)=-(Delta(DeltaMI_("prim")))/(Deltat)=-M(DeltaI_("prim"))/(Deltat)$}
{ [formula] E$=-(DeltaPhi(B))/(Deltat)=-((DeltaLI))/(Deltat)=-L(DeltaI)/(Deltat)$}
{ [formula] E$=-(DeltaPhi(B))/(Deltat)$ }
{ [formula] E$=vBlsin(theta)$ }
{ [formula] $(Δp_x)·(Δx)≥barh/2$ }
{ [formula] ${(|vecatimesvecb|=absin(theta)=|a_xb_y-a_yb_x|), ("direzione dito medio mano dx") :}
$ { [formula] ${(F_(_|_)=P cos(alpha)), (F_("//")=P sin(alpha)):}
$ }
{ [formula] ${(hatx","haty","hatz), (|hatx|=|haty|=|hatz|=1), (hat(hatx haty)=hat(haty hatz)=hat(hatz hatx)=90°),(hat(haty hatx)=hat(hatz haty)=hat(hatx hatz)=-90°) :}
$ }
{ [formula] ${(vecomega="costante" <=>vecM=0]), (vecv="costante" <=>vecR=0) :}
$ }
{ [formula] ${(vecv="costante" <=>vecF=0), (veca=(vecF)/(m_("inerz"))), (vecF_(12)=-vecF_(21)) :}
$ }
{ [formula] ${(vecx=vecx'+vec(v_t)), (vecv=vecv'+vec(v_t)), (veca=veca'), (vecF=vecF') :}
$ }
{ [formula] $|vecP|=sqrt((p_x)^2+(p_y)^2+(p_z)^2)$ }
{ [formula] $barS=barS_0cos^2theta$ }
{ [formula] $beta=v/c$ }
{ [formula] $Deltaq=2q =>p=2u$ }
{ [formula] $Deltat=gammaDeltat_0$ }
{ [formula] $E_("tot")=gammam_0c^2$ }
{ [formula] $E_(Planck)=nhf$
h=6.63·10^(-34)J·s }
{ [formula] $E_0=m_0c^2$ }
{ [formula] $E_n=(13.6 eV)n^2/Z$ }
{ [formula] $E=1/2 k x^2$ }
{ [formula] $E=hf$ }
{ [formula] $En(B_("sol"))=1/2Li^2$ }
{ [formula] $F_("att.max.statico")=k_s*Nt =>F_s<=k_s*N$ }
{ [formula] $F_d=k_d*N$ }
{ [formula] $f_r=f_s(1pmv_r/c)$ }
{ [formula] $gamma(beta)=1/sqrt(1-beta^2)$ }
{ [formula] $hf=E_i-E_f$ }
{ [formula] $K_(max)=hf-W_0$ }
{ [formula] $K=1/2 m v^2$ }
{ [formula] $K=E_("tot")-E_0=gammam_0c^2-m_0c^2=m_0c^2(gamma-1)$ }
{ [formula] $kvecP=k({:(P_x),(P_y),(P_z) :}
)=({:(kP_x),(kP_y),(kP_z) :}
)$}
{ [formula] $L_n=nbarh$ }
{ [formula] $L=(Phi(B)_("prim"))/(I_("prim"))$ }
{ [formula] $L=L_0/gamma$ }
{ [formula] $lambda_("Compton",e)=h/p_(e)=h/(m_ec)=2.43$pm }
{ [formula] $lambda_(prt,"De Broglie")=h/p_(prt)$ }
{ [formula] $lambda'=lambda+h/(mc)(1-costheta)$ }
{ [formula] $lambda=c/f$ }
{ [formula] $M=(Phi_("sec")(B_("prim")))/(I_("prim"))$ }
{ [formula] $m=gammam_0$ }
{ [formula] $p_(gamma)=E_(gamma)/c=(hf)/c=h/(c/f)=h/lambda_(gamma) => { [formula] $P_x,P_y,P_z$ }
{ [formula] $p=2u/3$ }
}
{ [formula] $p=2ucostheta$ }
{ [formula] $p=u/3$ }
{ [formula] $p=ucostheta$ }
{ [formula] $r_n=(5.29·10^(-11)m)n^2/Z$ }
{ [formula] $s_("frenata")=v_("iniz")^2/(2a) }
{ [formula] $S=A·c·u=A·c·$ }
{ [formula] $sigma=5.67·10^(-8)J/(s·m^2·K^4)$
$E=sigmaT^4$ }
{ [formula] $sin(alpha)=-0.7 <=> alpha=sin^(-1)(-0.7)$ }
{ [formula] $tan(alpha)=12 <=> alpha=tan^(-1)(12)$ }
{ [formula] $U=m g h$ }
{ [formula] $v=(v_1+v_2)/(1+(v_1v_2)/c^2)$ }
{ [formula] $v=1/sqrt(epsilon mu) =>c=1/sqrt(epsilon_0 mu_0)=3·10^(8) m/s]$ }
{ [formula] $veca_m=(Deltavecv)/(Deltat)$ }
{ [formula] $veca=lim_(Deltat =>0)(Deltavecv)/(Deltat)$ }
{ [formula] $vecalpha_m=(vec(Deltaomega))/(Deltat)$ }
{ [formula] $vecalpha=lim_(Deltat =>0)(vec(Deltaomega))/(Deltat)$ }
{ [formula] $vecM=vecrtimesvecF$ }
{ [formula] $vecomega_m=(vec(Deltatheta))/(Deltat)$ }
{ [formula] $vecomega="costante" <=>vecM=0$ }
{ [formula] $vecomega=lim_(Deltat =>0)(vec(Deltatheta))/(Deltat)$ }
{ [formula] $vecomega=vec(omega_0)+vecalpha*t$ }
{ [formula] $vecP=epsilon_0(vecE xx vecB)$
$p=epsilon_0E E/csin90°=(epsilon_0E^2)/c=u/c }
{ [formula] $vecp=mvecv=gammam_0vecv$ }
{ [formula] $vecP=P_x hatx + P_y haty + P_Z hatz $ }
{ [formula] $vecP=vec(P_x)"+"vec(P_y)"+"vec(P_z)$ }
{ [formula] $vecs=1/2 veca t^2 + vec v t + vec s_0$ }
{ [formula] $vectheta=1/2 vecalpha t^2 + vec omega t + vec omega_0$ }
{ [formula] $vecv_m=(Deltavecs)/(Deltat)$ }
{ [formula] $vecv=lim_(Deltat =>0)(Deltavecs)/(Deltat)$ }
{ [formula] $vecv=vec(v_0)+veca*t$ }
{ [forza] Forze e deformazioni ? LINK}
{ [geometria] trasformazioni [applet] LINK }
{ [gnfile]
- LINK}
{ [gnfile]
- LINK }
{ [gnfile]
- LINK }
{ [gnfile]
- LINK }
{ [gnfile] LINK }
{ [gnfile] LINK }
{ [gnfile] LINK }
{ [gnfile] LINK }
{ [gnfile] LINK }
{ [gnfile] LINK }
{ [gnfile] LINK }
{ [matematica] per formulare espressioni matematiche LINK }
{§formula_inversa§ }
{§formula§ }
{§formulario§ }
{§formule_inverse§ }
{§uniforme§ }
{1 L'energia potenziale elettrica LINK VIDEO DAL LIBRO DI TESTO:Il lavoro di un campo elettrico uniforme }
{2 Il campo elettrico generato da cariche puntiformi LINK Esercizio VIDEO DAL LIBRO DI TESTO }
{A pag. 124 4.3 Reazione a una deformazione: la forza elastica LINK VIDEO DAL LIBRO DI TESTO: la forza elastica LINK VIDEO DAL LIBRO DI TESTO Esperimento: misura di K LINK Esercizio VIDEO DAL LIBRO DI TESTO LINK Esercizio VIDEO DAL LIBRO DI TESTO }
{B07_Il_moto_uniforme.txt LINK }
{B08_Il_moto_uniformemente_accelerato.txt LINK }
{cerca cose (foglio di calcolo che cerca sia su informatica che altro: fisica, scienze, musica e altro) LINK [cercarelli] [js] }
{Che cos'è il [moto] armonico? Il [moto] armonico è un particolare tipo di [moto] rettilineo, che viene individuato come il [moto] lungo una componente per un corpo che si muove di [moto] circolare uniforme, mediante scomposizione lungo un asse fissato. }
{Che cos’è il [moto] [rettilineo] uniforme? Il [moto] [rettilineo] uniforme e un tipo di [moto] in cui il corpo può muoversi esclusivamente lungo una retta }
{Cos’è il [moto] uniformemente accelerato? È un [moto] dove il corpo si muove lungo uno spazio con [accelerazione] costante }
{Cos’è il [moto] [rettilineo] uniforme? È il rapporto tra la velocità e il tempo }
{cos’è il [moto] [rettilineo] uniforme? E [moto] che avviene lungo una traiettoria rettilinea con velocità costante. }
{eq. del [moto] [rettilineo] [uniforme] `x(t)=1/2at^2+v0_x t + x_0`}
{formula001.png LINK }
{formula1715.png LINK }
{formula1715b.png LINK }
{formulario_matematica.html LINK }
{formulario.html LINK }
{gnformules.txt LINK }
{gnOPENquiz_esempio_informatica.html LINK }
{indexInformatica.html LINK }
{LaboratorioInformatica.pdf LINK }
{Pag. 44 2.1 Il moto rettilineo uniforme LINK Esercizio VIDEO DAL LIBRO DI TESTO }
{Pag. 46 2.2 Il moto rettilineo uniforme accelerato LINK Esercizio VIDEO DAL LIBRO DI TESTO }
{Pag. 57 2.6 Il moto circolare LINK Esercizio VIDEO DAL LIBRO DI TESTO LINK>gn geoGebra LINK>Esercizi sul moto circolare uniforme (SVOLTI) LINK>es 1 LINK>es. 2a LINK>es. 2b LINK>es 3 LINK www.edutecnica.it }
{pag. 229 Il moto rettilineo uniforme LINK Ed. SEI (SM) LINK DAL LIBRO DI TESTO, caratteristiche del moto rettilineo uniforme
LINK DAL LIBRO DI TESTO, il moto rettilineo uniforme 2
LINK Esercizio VIDEO DAL LIBRO DI TESTO LINK>
LINK Integrale com somma con GeoGebra }
{pag. 257 Il moto uniformemente accelerato LINK Esercizio VIDEO DAL LIBRO DI TESTO Pallone lanciato in alto (5'0") c $vecs=1/2 veca t^2 + vec v t + vec s_0$ LINK>Algodoo: video costruzione del trenino }
{pag. 289 9.3 Il moto circolare uniforme LINK VIDEO DAL LIBRO DI TESTO }
{Pag. 421 Il lavoro nelle trasformazioni isoterme LINK De Capoa: Lavoro compiuto durante un ciclo (Es. svolto) }
{PI: Tutto l'AJAX di Google è open LINK [ajax] }
{programma [js] che crea un creatore [script] [form] di google forms casuali LINK }
{Qual è la formula del secondo principio della dinamica? F= m * a }
{Qual è la formula dell’accelerazione media? La differenza della velocita fratto quella del tempo }
{Qual è la legge oraria del [moto] [rettilineo] uniforme? x=s+vt }
{Qual'é la differenza tra lavoro ed energia, E come si esprime la loro formula?Energia e lavoro sono pressoché sinonimi ma possiamo definire l'energia come la capacità di compiere un lavoro. E= 1/2 m(v^2) }
{researchEnginesformovies.js LINK }
{researchEnginesformusicians.js LINK }
{search_trasformazioni.html LINK }
{Sintesi sulle trasformazioni dei gas LINK Ed. SEI (SM) }
{TiddlyMath - a web notebook for mathematics LINK web,maath studio di [disequazioni] in forma grafica [matematica] }
{un po' di formule inverse? LINK [formule_inverse] [fisica] }